De 11.30 a 12.45 h
Resumen:
The assessment and characterization of multi-linear utility functions (MLUFs) may require the elicitation of many attribute weights. In this case, the decision maker may find it difficult to provide precise assessments and may instead be more comfortable providing a range in which the scaling parameters fall or specifying that some parameters are larger than others. The question then becomes how the analyst should formulate a recommendation given this partial preference information. In this paper, we present a generalized Monte Carlo simulation procedure to test the sensitivity of MLUFs to changes in the scaling parameters. Specifically, we admit any preference information that can be expressed as a linear constraint. We then sample from the set of all possible MLUFs matching these constraints. We consider the additive MLUF, the multiplicative MLUF, the utility-independent MLUF, and the generalized-utility-independent MLUF. In so doing, we also demonstrate how analysts can test the sensitivity of their analysis to the structure of the MLUF itself. We illustrate the flexibility of our method within the context of a coal-fired
power plant siting decision used by previous authors.
Luis V. Montiel ha sido profesor de tiempo completo en EGADE Business School desde abril del 2014. Anteriormente participo en el programa posdoctoral en la Universidad de Texas en Austin bajo la tutela de Eric Bickel en el grupo de investigación de análisis para toma de decisiones. Entre sus intereses de investigación principales están la optimización bajo incertidumbre con interés especial en análisis de decisiones y aprendizaje en simulación para optimización. Su investigación actual está dedicada al análisis de aproximaciones de distribución conjuntas bajo información parcial y sus aplicaciones.